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Abstract 
 

Cardiovascular Disease (CVD) is the single largest 

killer in the world. Although, several CVD treatment 

guidelines have been developed to improve quality of 

care and reduce healthcare costs, for a number of 

reasons, adherence to these guidelines remains poor. 

Further, due to the extremely poor quality of data in 

medical patient records, most of today’s healthcare IT 

systems cannot provide significant support to improve 

the quality of CVD care (particularly in chronic CVD 

situations which contribute to the majority of costs).  

We present REMIND, a Probabilistic framework for 

Reliable Extraction and Meaningful Inference from 

Nonstructured Data. REMIND integrates the structured 

and unstructured clinical data in patient records to 

automatically create high-quality structured clinical 

data. There are two principal factors that enable 

REMIND to overcome the barriers associated with 

inference from medical records. First, patient data is 

highly redundant – exploiting this redundancy allows 

us to deal with the inherent errors in the data. Second, 

REMIND performs inference based on external 

medical domain knowledge to combine data from 

multiple sources and to enforce consistency between 

different medical conclusions drawn from the data – 

via a probabilistic reasoning framework that 

overcomes the incomplete, inconsistent, and incorrect 

nature of data in medical patient records. 

This high-quality structuring allows existing patient 

records to be mined to support guideline compliance 

and to improve patient care. However, once REMIND 

is configured for an institution’s data repository, many 

other important clinical applications are also enabled, 

including: quality assurance; therapy selection for 

individual patients; automated patient identification 

for clinical trials; data extraction for research studies; 

and to relate financial and clinical factors.  REMIND 

provides value across the continuum of healthcare, 

ranging from small physician practice databases to the 

most complex hospital IT systems, from acute cardiac 

care to chronic CVD management, and to 

experimental research studies. REMIND is currently 

deployed across multiple disease areas over a total of 

over 5,000,000 patients across the US.  

 

1. Introduction 
 

Cardiovascular Disease (CVD) is a global epidemic 

that is the leading cause of death worldwide (17 million 

deaths) [78]. The World Health Organization estimates 

that CVD is responsible for 10% of “Disability 

Adjusted Life Years” (DALYs) lost in low- and 

middle-income countries and 18% in high-income 

countries. (The DALYs lost can be thought of as 

“healthy years of life lost” and indicate the total burden 

of a disease as opposed to counting resulting deaths.)  

Section 2 motivates our research by describing how 

current technologies are unable to combat the CVD 

epidemic. We begin by describing the cardiology 

burden faced today, with an emphasis on the United 

States, and discuss some of the factors contributing to 

the further deterioration of the CVD epidemic. A 

number of CVD treatment guidelines have been 

developed by health organizations to assist the 

physician on how to best treat patients with CVD. Yet 

adherence to these guidelines remains poor, despite 

studies overwhelmingly showing that adherence to 

these guidelines reduces morbidity and mortality, 

improves quality of life, and dramatically reduces 

healthcare costs.  

One of the most promising ways to improve the 

quality of healthcare is to implement these guidelines 

within healthcare IT systems.  Unfortunately, as we 

discuss in Section 2, due to the poor quality of 

healthcare data in medical patient records (the “Data 

Gap”), most healthcare IT systems are unable to 

provide significant support for CVD care: this is 

particularly true in chronic CVD situations which 

contribute to the majority of costs. Furthermore, this 

“Data Gap” is not likely to improve with the 

introduction of the Electronic Health Record (EHR), 
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and is further hampered by the lack of standards for 

clinical data, and the fragmented nature of the 

healthcare IT industry.  Medical patient data is 

typically scattered in multiple sources and most of the 

information about the clinical context is stored as 

unstructured free text – these are dictated by physicians 

at different time points over the continuum of care 

delivered to the patient. It is important to note that the 

data is only “poor” from the point of view of automated 

analysis by computers; it is of high-enough quality for 

physicians to document and summarize the delivery of 

healthcare over multiple patient visits with different 

physicians. Many of the patients we have analyzed 

already have electronic data documenting their medical 

histories for more than 5 years (some going back even 

20 years). Over time, exponentially increasing 

electronic data will be available for analysis for more 

and more patients. Analyzing this data will allow us to 

improve the healthcare of individual patients and also 

to mine new population-based knowledge that can be 

used to develop improved healthcare methodologies.   

In Section 3, we introduce our solution for bridging 

the “Data Gap,” the REMIND algorithm for Reliable 

Extraction and Meaningful Inference from 

Nonstructured Data.  REMIND is a probabilistic 

framework for automatically extracting and inferring 

high-quality clinical data from existing patient records 

– namely, from patient data collected by healthcare 

institutions in the day-to-day care of patients, without 

requiring any additional manual data entry or data 

cleaning.  We discuss the business decisions that 

influenced the design and development of the 

REMIND platform – namely, the need to rapidly 

deploy REMIND in diverse healthcare IT situations, 

for different clinical applications, and for different 

diseases, and to easily plug in different analysis 

algorithms for natural language processing and 

probabilistic inference. In Section 4 we briefly review 

the details of the REMIND algorithm [59]. Our goal is 

not to build a solution for a single application (e.g., 

implement a particular Heart Failure guideline) but to 

build a general solution that support multiple different 

applications for different diseases. Although REMIND 

was initially developed for automated guideline 

compliance, many other clinical applications are also 

supported by our solution, both at the individual patient 

level and the population level. These include 

automated methods for: therapy selection for individual 

patients [26]; patient identification for clinical trials; 

data extraction for research [67]; quality assurance; and 

relating financial and clinical factors [57].   

In Section 5 we describe a number of successful 

deployments of our solution for the various 

applications listed above.  This section illustrates that 

the REMIND platform can be deployed on the entire 

range of healthcare IT systems in use today, from 

relatively simple physician office systems, to some of 

the most complex hospital databases in existence.  

Further, our solution provides value in both chronic 

and acute care settings; can support all aspects of 

physician workflow (screening, diagnosis, therapy and 

monitoring) and healthcare administration; and provide 

research support, both in academic institutions and for 

ongoing pharmaceutical and medical device clinical 

trials [58][62]. The results provided have been 

rigorously verified by clinicians and scientists. In this 

paper we have focused solely on cardiac applications 

from clinical data. REMIND is currently deployed 

across multiple disease areas on a total of over 

5,000,000 patients. 

We review related research in the field of medicine 

and probabilistic inference in Section 6, We discuss 

some future applications of REMIND in Section 7, and 

conclude in Section 8 with our thoughts on further 

research.  

 

2. Motivation 
 

Since 1990, more people have died worldwide from 

CVD than from any other cause. Clearly CVD is an 

international crisis; however, since all applications 

described in this paper are from US healthcare 

institutions, we focus on the United States. 

 

2.1. CVD in the United States 
 

In the United States, an estimated 70 million people 

have some form of CVD. CVD accounts for roughly 

one million deaths per year (38% of all deaths), and is 

a primary or contributing cause in 60% of all 

deaths[4][1]. CVD claims as many lives per year as the 

next 5 leading causes of death combined. 

Unfortunately, a number of trends suggest that the 

problems of cardiovascular disease will only be 

exacerbated in the future.  First, the aging of the U.S. 

population will undoubtedly result in an increased 

incidence of CVD [9].  Second, there is an explosive 

increase in the number of Americans that are obese or 

have type 2 diabetes; these conditions result in 

increased cardiovascular complications.   

In addition to being a personal health problem, 

CVD is also a huge public health problem.  In the 

United States, it is estimated that $394 billion will be 

spent in 2005 on treatment and management of 

cardiovascular disease.  By comparison, the estimated 
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cost of all cancers is $190 billion.  By any measure, the 

burden of CVD is staggering. 

Most patients with CVD will never be cured; rather, 

their disease must be managed.  Often, people with 

CVD will live for 10 or 20 years after initial diagnosis.  

A significant portion of the costs associated with CVD 

comes about when the chronic disease is not managed 

well, and the patient comes to the emergency room of a 

hospital with an acute disease, such as a heart attack or 

stroke. This is further exacerbated by the shortage in 

the number of cardiologists in the United States.  Of 

the approximately 18,000 practicing cardiologists in 

the US, over 5,000 are above the age of 55, and 400-

500 will retire every year, while less than 300 will enter 

the workforce. This highlights the need to better 

manage CVD patients after diagnosis – particularly to 

provide tools to help the overburdened cardiologist 

improve the quality of care delivered to CVD patients. 

 

2.2. CVD Guidelines 
 

As the problem of CVD has exploded, so has 

medical knowledge about how to best diagnose and 

treat it.  New diagnostic tests and therapies are 

constantly being developed.  These tests have shown 

great promise for both improving the quality of life for 

the CVD patient, and reducing the burden of health 

care by reducing the incidence of acute episodes. In an 

attempt to improve the quality of care for patients, 

national health organizations, such as the American 

Heart Association (AHA) and the American College of 

Cardiology (ACC) have created expert panels to review 

the results of various clinical trials and studies, extract 

out best practices, and then codify them into a series of 

guidelines.  These guidelines attempt to assist the 

physician on how to best treat patients with CVD.  

(This process is not unique to cardiovascular disease, 

but happens in every branch of medicine.) 

Recent studies have shown that strict adherence to 

these guidelines result in improvements at a personal 

level, including reduced morbidity and mortality and 

improved quality of life, as well as reduced costs to the 

overburdened health care system. Based on these 

studies CMS (the Center for Medicare & Medicaid 

Services) has begun a series of programs to reward 

physicians and hospitals who comply with guidelines in 

an attempt to improve guideline adherence. These 

“pay-for-performance” schemes are intended to provide 

a direct financial incentive to healthcare providers – in 

this case, CMS is working with hospitals to promote 

the adoption of the heart attack component of the AHA 

and ACC cardiac treatment guidelines, which 

recommend that physicians prescribe a medicine called 

a beta blocker early after an acute heart attack and 

continue the treatment indefinitely in most patients. 

Beta blockers are prescription medicines that help 

protect the heart muscle and make it easier for the heart 

to beat normally. Despite being well-known, 

compliance to this guideline in the U.S. is estimated to 

be below 50%.  

There is overwhelming evidence showing the huge 

benefits of following these guidelines, from the 

perspective of the patient, physician, hospital, and 

public health. Yet overall guideline adherence remains 

woefully low.  There are 3 principal factors which 

contribute to this lack of compliance. 

  First, in recent years, there has been an explosion 

in guidelines.  In the United States, the National 

Guideline Clearinghouse (www.guideline.gov) has 

almost 1000 guidelines for physicians to follow.  These 

guidelines are often modified on a periodic basis, such 

as every year, in response to new medical knowledge. 

A quick search on Google or Med-Line for heart failure 

guidelines returns several hundred references – some 

heart failure guidelines, with subsequent modifications 

are defined in [1][2][3][27][28].  

Second, with the growing trend of HMOs, and the 

economic realities of medicine today, physicians are 

forced to see more and more patients in a limited 

amount of time.  Often, physicians will only average 

10-18 minutes per patient, and carry a patient load of 

20-30 patients per day.
1
  

Third, there are often multiple physicians and nurses 

who interact with the patient, and there is often poor 

communication between these health care workers with 

regards to the patient.  In such a hectic and chaotic 

environment, it is impossible to (manually) consistently 

and accurately identify and follow the specific 

guidelines for that patient among the hundreds of ever-

changing requirements in use.  Unless the proper 

clinical guideline is identified and followed at the point 

of care (that is, when the patient is with his physician), 

it is not useful.  

 

                                                           
1
 10-20 minutes per patient appears reasonable, but it 

includes all activities associated with the patient visit, 

including: reviewing previous patient history; talking with 

the patient about their symptoms and history; examining the  

patient; arriving at a diagnosis; ordering additional tests and 

procedures; determining what drugs the patient is currently 

taking; prescribing treatment and medication; explaining the 

diagnosis and treatment to the patient; counseling the patient 

on the risks and rewards of the therapy; and ordering 

referrals if needed; this time also include time needed for the 

physician to record all the details of the patient visit 

including positive and negative findings, impressions, orders, 

final instructions, and finally signing off on the patient bill. 

http://www.guideline.gov/
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2.3. Electronic Health Records (EHR) 
 

The electronic health record (EHR) is increasingly 

being deployed within health care organizations to 

improve the safety and quality of care[20].  Because a 

guideline is simply a set of eligibility conditions 

(followed by a set of recommended treatment actions) 

it appears fairly straightforward to determine guideline 

eligibility by evaluating a guideline’s inclusion and 

exclusion criteria against an EHR. Unfortunately, as 

discussed below and later in Section 5.3, even the best 

EHRs in the world do not fully capture the information 

needed to support automated guideline evaluation. 

Medical patient data in electronic form is of two 

types: financial data and clinical data. Financial data 

consists of all the information required to document the 

physician’s diagnoses and the procedures performed, 

and is collected primarily for the purpose of being 

reimbursed by the insurance company or the 

government. Financial data is collected in a highly 

structured, well-organized, and normalized fashion, 

because if it were not in this form, the payers would not 

reimburse the institution or physician. This data can, 

therefore, be analyzed, dissected, and summarized in a 

variety of ways using well-established database and 

data warehousing methods from computer science. 

In addition to structured information about patient 

demographics, this “financial data” also includes 

standardized patient diagnoses which are classified 

according to the internationally accepted standards, 

ICD-9 (International Classification
 

of Diseases, 9th 

Revision [76]) and ICD-10 [77]. Many of the criteria 

used to determine if a patient is eligible for (and 

therefore should be treated according to) a particular 

guideline, are based upon diagnostic information. 

Therefore, it appears as if these structured diagnosis 

codes would be a rich source for data mining, and 

particularly for determining whether a patient was 

eligible for a particular treatment guideline. 

Unfortunately, these ICD-9 (and ICD-10) codes are 

unreliable from the clinical point of view. Various 

studies have shown that the clinical accuracy of ICD 

codes is only 60%-80% [7]; in other words, when an 

ICD code is assigned, the patient will have that 

corresponding clinical diagnosis only 60-80% of the 

time. The principal reason for this is that billing data 

reflects financial rather than clinical priorities.   

In the United States, reimbursement is based 

primarily on the severity of diagnosis: for example, 

although the patient treatments for AMI (heart attack) 

and Unstable Angina (a less severe cardiac illness) are 

virtually indistinguishable, the former diagnosis code 

generates twice the reimbursement for the institution.  

There have been several well-publicized cases, where 

institutions have received hefty fines for “over-coding” 

(i.e., assigning higher diagnosis codes than is justified). 

Alternately, billing codes may be missing, or “under-

coded”, so that institutions are not accused by 

insurance companies of fraudulent claims.  

Furthermore, at least in the US, this coding is done by 

medical abstractors, who although trained to do this 

coding, typically lack the medical training to assess the 

clinical data and arrive at the correct diagnosis. 

Clearly, financial data alone is insufficient for any 

kind of patient-level clinical decision support 

(including determining guideline eligibility), because 

the errors will multiply when multiple such diagnoses 

are jointly needed to make a decision (for instance to 

determine eligibility for a guideline). 

Operational clinical systems have very poor data 

quality from the standpoint of access and analysis. The 

structured clinical data in clinical repositories (labs, 

pharmacy, etc.) is sparse with gaps in data and in time, 

inconsistent due to variations in terminology, and can 

be clinically misleading. Key clinical information is 

stored in unstructured form in the clinical repository, 

typically as unstructured free text in patient history and 

physicals, discharge summaries, progress notes, 

radiology reports, etc. Further, the nature of the 

relationships within data are not well defined, and 

causal relationships and temporal dependencies cannot 

be unearthed without medical knowledge; for example, 

it may not be immediately clear to which diagnosis a 

procedure “belongs”. Efforts to extract key clinical 

information based on natural language processing alone 

have met with limited success [44] – and for even 

slightly complex decisions like guideline eligibility, 

reliability is very poor. Simply put, the data in clinical 

repositories is often messy, and thus only a small 

fraction of the clinical data is available for analysis. 
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2.4. The “Data Gap” in medical records 
 

Consider the extremely simple guideline: “If a 

patient is admitted with a heart attack, they should be 

prescribed beta blockers upon discharge.” 

In order to assess compliance, it would appear to be 

sufficient to determine if the patient was admitted with 

an AMI (acute myocardial infarction or heart attack) 

and if they were prescribed beta-blockers. 

Unfortunately, as discussed earlier, even if the patient 

has an ICD-9 code for an AMI it may not be clinically 

accurate. The patient may choose to fill a prescription 

for a beta blocker at a retail pharmacy, so the 

institution’s pharmacy system (if it has one) will have 

no record of a beta blocker.  Most importantly, even if 

it were possible to determine if the patient did have an 

AMI this visit and was (or was not) prescribed beta 

blockers, there are no data fields to determine if beta 

blockers are contra-indicated, that is, should not be 

prescribed due to some other reason, such as other 

medications, complications, or if the patient is known 

to be allergic to that drug.  To receive certification 

from JCAHO [36], hospitals hire trained nurses to 

manually extract information from a random sample of 

75 emergency room patients about appropriate beta 

blocker prescription (and a few other very simple 

guidelines). In short, this cannot be automatically 

determined using naïve approaches. Figure 1 illustrates 

the “Data Gap” in EHRs that prevents decision-support 

tools from assisting the physician in providing 

guideline-directed high-quality care to the patient.  

 

2.5. Automated Patient Data Analysis 
 

Currently there are 3 main ways to perform 

automated data analysis, discussed below: 

1) The most common method, “Limited automated 

extraction of structured elements only”, brings over 

only the coded financial information (e.g., ICD-9 

codes), and loses much of the required clinical 

information.  Further, the coding process has a 

surprisingly high fraction of errors [57]. Doctors are 

very pressed for time in the 10-20 minutes they have 

per patient.  If a system alerted a physician about 

guidelines based on a patient’s ICD-9 codes, it would 

have so many false alerts that the physician would turn 

it off. (This is not to indicate that billing data is useless. 

It is used for aggregate level analysis for 

epidemiological, quality of care,
 

and cost 

studies,[11][31][48] by hospitals, insurers, the US 

Dept. of Health Care and CMS. And furthermore, 

REMIND also leverages this data.  The key point is 

that billing data alone is useless for decision support.) 

2) “Manual conversion of data by medical experts” 

leads to high-quality clinical data.  But, this is 

expensive, time consuming, and is only possible for a 

small subset of patients or at institutions with a strong 

research focus.  It is infeasible for routine clinical use. 

3) “Forcing doctors to provide structured input.” 

Currently physicians document their observations as 

dictated free text, and are extremely efficient at doing 

so. Taking several minutes (out of the 10-20 m/patient) 

to additionally fill in specific values in a database can 

lead to physician resentment, wastes valuable physician 

time and still leads to missing information (fields may 

not be provided for all needed information in advance). 

More clinical data will become available in structured 

form as EHRs get more accepted.  But it will take 

several years before EHRs will be in routine use for a 

large fraction of the patient population.  

The bottom line is that clinical data is complex, non-

uniform and non-homogenous. Automated clinical data 

analysis of the kind associated with financial data, is 

almost impossible today. There is a desperate need to 

create highly-structured clinical data from existing 

patient records collected by the institution in its day to 

day practice without requiring any manual data entry or 
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Figure 1: The "Data Gap" in hospital patient records 

 



 Page 6 of 20  
 

change in physician workflow.  Our solution works in 

the current scenario with poor data quality. However, it 

is designed to be scalable with respect to the volume 

and quality of data. REMIND will further benefit as 

better quality data becomes available, via EHRs or by 

manual methods. 

  

3. Automated Inference from Medical 

Patient Records 
 

The “Data Gap” illustrated in Figure 1 explains the 

inability of automated decision-support systems to 

assist the physician in providing high-quality care to 

the patient.  As noted earlier, a computer system could 

not reliably answer from most electronic patient 

records the question, “Should this patient be given 

beta-blockers?” However, if the same question is posed 

to a physician, it is very likely that they (given 

sufficient time) can answer the question correctly. This 

means that the information needed to answer the 

question does exist (or can be inferred) from the 

electronic patient data, and the “data gap” exists only 

for computer systems that requires data to be entered in 

a structured form for analysis.  

 

3.1. Exploiting redundancy in patient records 
 

Patient records typically contain multiple redundant 

pieces of information about a disease, or indeed any 

medical situation associated with the patient.  For 

instance, a doctor (or a computer program) could infer 

that a patient had a particular diagnosis (for example, is 

diabetic) in many different ways and from different 

data sources: 

 Billing codes (ICD-9 of 250.xx for diabetes)  

 A transcribed free text dictation that identifies a 

diagnosis (History and Physical, Discharge 

summary) 

 Symptom (Blood sugar values > 300 in labs) 

 Treatment (Insulin or oral anti-diabetic 

administration in Pharmacy) 

 A complication associated with disease (e.g., 

diabetic nephropathy) 

 Other relevant information about the diagnosis 

(e.g., some steroids elevate blood sugar) 

   

3.2. High-level Requirements 
 

In the above example, the diabetes diagnosis can be 

inferred from many different data sources and by 

different methods.  For instance, natural language 

processing could help extract information from free 

text extraction. A critical component in any successful 

system must be the use of medical domain knowledge 

to draw inferences from data. 

Fundamentally, any solution must (a) be patient-

centric, (b) combine information extracted from all 

available patient data, and (c) be guided by medical 

domain knowledge.  It follows, therefore, that the 

system must be able to handle and reason with 

information in different formats, for instance, doctor’s 

notes in free text and financial, pharmacy, and lab 

databases from the diabetes example (and in future 

applications: images, proteomic and genomic data). 

Further, this information may be contradictory (or 

indicate the presence or absence of diabetes to varying 

degrees). Therefore, rather than relying on individual 

data elements to be extracted correctly, probabilistic 

reasoning is needed to deal with missing, incorrect, and 

imprecise information in the clinical repository.  

Finally, a patient history is not static – symptoms, 

diagnoses, and treatments may all vary, and temporal 

inferences will be needed to deal with this added 

complexity. 

There are some additional business drivers to 

consider.  First, as medical guidelines change 

periodically, the medical knowledge associated with 

our solution will need to be easily modified. Second, 

once we have a guideline implemented at one 

institution, we may wish to implement other guidelines 

at the same institution with minimal effort.  Third, as 

many institutions implement the same guideline, we 

may wish to transfer our guideline-solution from one 

institution to another with minimum effort.  Fourth, our 

solution must scale easily from hundreds of patients to 

millions of patients. Fifth, our solution must handle the 

data privacy issues inherent to medical data [72]. 

Flexibility is a key design requirement – our system 

must be able to easily incorporate new algorithms to 

meet the needs of future applications and leverage new 

technologies, for example, new NLP or probabilistic 

inference methods.  Finally, we should be able to 

support other decision support applications, both at a 

patient (e.g., patient identification for clinical trials) 

and population (e.g., quality assurance) levels.  

 

3.3. System Overview 
 

The REMIND algorithm consists of 3 steps. In the 

extraction step, information is extracted from every 

part of the patient records in isolation, e.g., from every 

row in a database table, from every phrase in every 

sentence.  Obviously, several thousand such pieces of 

information can be extracted from a single patient 

record, many of which may be incorrect and/or 
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inconsistent, due to errors in the original data or due to 

the extraction algorithms (for instance, natural 

language processing is by no means perfect). 

In the combination step, all observations about a 

single variable at a single point in time are combined to 

produce a single observation or a distribution over 

many different values. 

In the inference step, different variables are 

combined across time to infer the values of the 

variables needed for determining guideline eligibility 

or compliance.  All 3 steps are configured by the 

medical domain knowledge needed by REMIND to 

extract the necessary information and arrive at the 

desired conclusion. 

This algorithm is illustrated in Figure 2.  The 

“REMIND Platform” contains all the code needed to 

implement the 3 steps described above. A key design 

decision was to implement the medical domain 

knowledge to drive REMIND as external modules (the 

“REMIND application”) that plugs into the Platform.  

These REMIND applications are implemented as XML 

files which configure how the REMIND platform 

processes data. Therefore, to switch from 

implementing, say, a heart failure guideline, to 

recruitment for a coronary artery disease clinical trial, 

to monitoring radiation treatments for breast cancer, 

will not require writing any code – each REMIND 

application will simply consist of a configuration file. 

The REMIND domain knowledge to configure the 

platform is of two types.  First, institution-specific 

domain knowledge describes how the institution’s data 

is organized, where each kind of data is found and 

under what format, and how to retrieve all data 

associated with a patient.  The second type of 

knowledge is application-specific.  Note that 

application-specific domain knowledge can be 

transferred easily from one institution to another – 

minor retuning would be needed to deal with the 

differences in the types of data and data quality at each 

institution, but in general the process of moving an 

application from one institution to another is low-

effort.  Similarly, once the REMIND platform is 

configured for a particular institution (i.e., the 

institution specific domain knowledge has been 

created) it also relatively straightforward to implement 

new application-specific domain knowledge upon the 

existing configuration. 

 

4. The REMIND Algorithm 
 

In this section we describe one specific application 

of REMIND (Reliable Extraction and Meaningful 

Inference from Nonstructured Data).  Our goal is to 

infer disease progression; whether a patient has a 

particular disease at different points in time, and if so 

what stage (degree of severity) of the disease.  Our 

medical knowledge about the disease includes 

knowledge about legal disease sequences – for 

instance, it may be legal to go from stage 0 to stage 1, 

but not from 1 to 0, and also information about 

expected transition times (gathered from the medical 

literature and survival curves from clinical trials) from 

one disease stage to another. 

Our approach to inference with this multi-source 

data is to model the data as arising from a generative 

process, and combine prior knowledge about this 

process with observations for a specific patient using 

Bayesian techniques. Patient data is collected in a 

medical institution at arbitrary points in time (i.e., not 

at regular intervals but at patient visits only), and these 

sampling instants vary from patient to patient. Hence, 

we model the processes of progression of patients’ 

diseases and the collection of this data as continuous 

time processes that may be sampled at arbitrary 

instants. We consider a model wherein a patient has a 

 
Figure 2: REMIND 3-step process for inference 
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state (for the disease of interest), and observations 

about the state and related variables are stored in and 

may be collected from various data repositories.  

 

4.1. Problem Definition 
 

Let S be a continuous time random process taking 

values in  that represents the state of the system; note 

that S may be a combination of multiple variables. Let 

T={t1, t2, … , tn}, where ti<ti+1, be the n “times of 

interest when S has to be inferred. Let Si refer to the 

sample of S at time ti  T. Note that T and n can vary 

for different realizations of the process. 

Let V be the set of variables that depend upon S.  

Let O be set of all (probabilistic) observations for all 

variables, v  V. Let Oi be the set of all observations 

“assigned” to ti T; i.e., all observations about 

variables v  V that are relevant for this time-step ti. 

Similarly, let Oi(v) be the set of observations for 

variable v “assigned” to  ti. 

Let seq be a random variable in 
n
; i.e., each 

realization of seq is a specific (legal) sequence < S1, S2, 

.. Sn >. 

In the case when we are interested only in the value 

of a variable at a point in time (e.g., in the AMI 

example, we simply wish to know if the patient really 

had an AMI), our goal is to estimate: 

 

  

When we wish to track the patient’s progress over 

time, our goal is to estimate the most likely state 

sequence, seqMAP, the maximum a-posteriori estimate 

of seq given O: 

 

 

 

4.2. Overview of Approach 
 

We view S as a continuous time Markov process 

from which we observe non-uniform samples. Our 

implementation of REMIND assumes that S is a 

stationary Markov process, whereas variables, v  V 

that depend on S have conditional distributions (on the 

parent variable) that are non-stationary. However, our 

framework can be extended to handle even non-

stationary Markov processes. 

REMIND’s 3-step process that estimates the 

distribution of the variable of interest VMAP (or seqMAP) 

is summarized below. Our goal is to extract and 

combine information from all data sources. 

(1) Extraction step: observations are gathered from the 

data sources. These observations provide the basic 

information about the variables v  V. Operationally; 

they are converted into a uniform representation, called 

probabilistic observations. These play the same role as 

likelihood findings in standard Bayesian reasoning. 

Note that every observation o  O is assumed to be 

potentially incorrect.  

(2) Combination step: each observation is assigned to 

one time of interest, ti  T. Then each state, Si is 

estimated from all of the observations Oi.  

(3) Inference step: the inferences are propagated 

across time and the posterior probabilities for each 

variable computed. 

These steps are in direct correspondence to the 

different propagation steps of the belief propagation 

algorithm, well known in the probabilistic inference 

literature. 

 

4.3. Extraction of probabilistic observations 

from data 
 

 In this step we produce probabilistic observations, 

oi, from data sources. Each oi is drawn entirely from a 

single piece of information in a data source (e.g., from 

a phrase in a sentence, or a row in a database), and 

hence is assumed to be inherently undependable (either 

due to errors in the data or in the extraction process). 

An observation oi is of the form <NAME, DATE, 

DIST> where NAME is an observed variable v  V, 

DATE is the date of the observation, and DIST defines 

a distribution over all possible values that can be taken 

by NAME given the observation. REMIND currently 

does extraction from relational databases and free text. 

Methods from computational linguistics are used to 

extract information from free text. 

These observations generated from the data sources 

are meant to encode the a posteriori distribution of a 

variable given the section of the data source that they 

are extracted from, and are subsequently converted into 

likelihood findings for computation in the Bayesian 

Network. 

 

4.4. Combination & Inference 
 

The primary focus is estimating what happened to 

the system (e.g., disease evolution) across the duration 

of interest. Hence, a natural abstraction of the problem 

is to look for the best estimate of the sequence of 

system states across time, and the maximum a 

posteriori (MAP) estimate is the one whose probability 

is maximal. Hence, given the observations that we have 

extracted, we would like to estimate the a posteriori 

probability of each legal state sequence and pick the 

most probable one. This can be done in two steps, the 

first of which is combination of observations at a fixed 

]|[maxarg OseqPseq seqMAP 

]|[maxarg OVPV VMAP 
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point in time and the propagation of these inferences 

across time.  

We use a Markov Model to estimate the evolution 

of the patient’s state. As the observations about patients 

are spaced non-uniformly across time, the standard 

discrete-time Markov approximations are not 

necessarily justifiable. In order to overcome this 

shortcoming, we model the process of evolution of the 

patient state as a continuous-time Markov process from 

which we get to observe non-uniform samples. More 

specifically, the parameters we need to model are the 

dwell time in each state and the transition rates from 

each state to every other. In our current 

implementation, we consider the state to be a stationary 

Markov process whereas the other variables that 

depend on it can have conditional distributions that are 

non-stationary. Our framework, however, can be 

modified to handle even the case of non-stationary state 

processes.  

Each piece of information that is extracted in the 

previous step is in the form of an a posteriori 

probability of a variable given the small context that it 

is extracted from. We can thus have multiple such 

assertions from different parts of the same source and 

from different sources at any given instant in time. All 

the assertions about a variable at a given point in time 

are combined into one assertion in a straightforward 

manner by using Bayes’ theorem (under the assumption 

that the observations are independent given the 

variable) as follows:  

We model the relationships between the set of all 

variables of interest using a Bayesian Network, which 

is used to infer the posterior distributions of all the 

variables at a given point in time given all the 

information at that time. For inference across time, we 

may now use a standard dynamic programming based 

approach (e.g. the Viterbi algorithm [56]).  

Because we model the state process as being 

Markov, we have the following equation that connects 

the a posteriori probability of a sequence of samples of 

the state process given all the observations to the 

temporally local a posteriori probability of the state 

given all observations at each time instant.   

 

4.5. Domain Knowledge in REMIND 
 

This includes y the state S (the variables we wish to 

infer), V (and the data sources for each variable), 

institution-specific domain knowledge which describes 

the institution’s data structure and access mechanisms, 

extraction knowledge (e.g, NLP and database queries), 

dependencies between S and V, and the dwell times 

and transitional probabilities.  

Despite the seeming complexity, most of the domain 

knowledge (DK) in REMIND is fairly simple.  The 

clinical application defines S, the variables in V can be 

elicited fairly easily, and institution-specific knowledge 

is a one-time implementation effort across many 

applications at that institution. DK for extraction can be 

fairly complex, but we have investigated ways to learn 

this from data. In other medical Bayesian applications 

[5][38][47], the actual probability values for the 

dependencies within S and V are typically a huge 

bottleneck, and require tremendous fine tuning.  

Because REMIND leverages data redundancy, our 

systems works well for a wide range of probability 

values for inference and extraction [62].  Similarly, we 

roughly estimate dwell times and transition 

probabilities from survival curves in medical literature. 

Experiments in [62] also show that REMIND is also 

insensitive to variations in the temporal parameters. 

That said, obviously a big part of the success of any 

application is the careful tuning that must be done to 

ensure success.  Because of the nature of the 

application and its potential impact, even if REMIND 

is inferring information at very high accuracies, there is 

often value in further improving the end result. All 

REMIND applications are validated at multiple 

institutions before release. (The actual DK constitutes 

the entire REMIND application and is proprietary.) 

 

5. Real-world deployments of REMIND 
 

Here we describe actual deployments of REMIND 

in various clinical scenarios.  Each deployment is 

characterized by the following variables: 

 Name of Institution 

 Acute or clinical setting 

 IT System, # of physicians and patients supported. 

 Population analyzed (may be subset of total) 

 Goal (Additional secondary goals are described in 

parenthesis.) 

 Electronic Data Available – at a minimum this will 

include Billing, demographics, and transcribed 

free text.  Additional specialized databases and 

free text specialist reports may be available. 
1
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5.1. Process Control for Diabetics with AMI 
Institution: University of Pittsburgh Medical Center 

Setting: Acute Care  

IT System: Large hospital IT system supporting several 

hundred physicians, multiple specialities, multiple 

locations, 2 Million patients. 

Population Analyzed: ER Patients admitted with a 

diagnosis of Acute Myocardial Infarction (heart attack) 

in a 3 year period (3000 patients). 

Goal: Guideline compliance: proper monitoring of 

diabetics who had AMI.  (Also, clinical and financial 

outcomes analysis) 

Electronic Data: Billing, demographics, pharmacy DBs 

and transcribed free text (history & physical, progress 

notes, discharge summaries, ECG and ultrasound 

reports) from the Medical Archival System (MARS) 

Despite the best quality of care provided to 

cardiology patients, it is inevitable that some people 

will still face acute episodes and will be rushed to 

hospital.  One of the most common such problems is an 

acute myocardial infarction (AMI), or heart attack.  In 

fact, for many people, a heart attack is the first 

symptom that a patient even has cardiac problems.  For 

proper care of patients, it is important that patients who 

are brought to an emergency room are first properly 

diagnosed that they have an AMI.  Just as critical is to 

ensure that patients who are diagnosed with an AMI are 

also assessed for diabetes, and to ensure that their 

blood sugar is monitored and treated properly, that is, 

given proper glycemic control (AMI patients with 

diabetes have much better outcomes if the diabetes is 

also treated). However, as discussed earlier, these 

billing codes are inaccurate from the clinical point of 

view, and are used primarily for reimbursement.  

Finally, the issue of whether diabetic patients are 

treated properly for glycemic control cannot be 

evaluated from structured data alone, but must be 

inferred from the clinical record. 

To address these issues, a study was conducted with 

the University of Pittsburgh Medical Center[57].  The 

main purpose of this study was to answer the following 

three questions: 

1. Did patients who were being admitted to the 

UMPC Intensive Care Unit (ICU) with AMI 

really have an AMI? 

2. Did these patients, who had an AMI, also 

have diabetes? 

3. If the patient had an AMI and diabetes, were 

they given proper glycemic control? 

 

To address these questions, data was collected from 

patients who were admitted to the UPMC ICU with a 

principal diagnosis of AMI (that is, with a principal 

ICD-9 billing code of 410.xx) in the year 2001.  From 

over 1000 records, 52 were selected randomly.  

Next, clinical definitions of AMI and diabetes were 

provided from internationally accepted criteria [71] and 

coded into REMIND.  The diagnosis of AMI depends 

on the unequivocal presence or absence of a 

combination of three factors upon which the diagnosis 

rests: symptoms of cardiac pain, abnormalities in the 

electrocardiogram (ECG), and enzymes released by 

injured heart muscle. The degree to which those factors 

meet criteria, individually and in combination, 

determine the certainty of the AMI diagnosis 

(“definite”, “probable”, or “possible”).  Next, each 

factor was further defined.  For example, for various 

enzymes released by injured heart muscle, such as 

troponin, CPK, and CK-MP, various ranges 

corresponding to abnormal, equivocal, and normal 

ranges were defined.  Similarly, ECG changes and 

cardiac pain were further defined.  For these two cases, 

the clinical definitions had to be inferred from free text.  

Diabetes could be inferred either from mention by the 

physician in their reports, or from either administration 

of insulin or other oral agents specific to diabetes, or 

from the presence of lab records showing 2 random 

blood sugars above 300 mg/dl.  Glycemic control was 

assessed by monitoring blood sugar levels for these 

patients in the hospital.  REMIND was run on 52 

patients to answer the 3 questions. 

A physician at UPMC, blinded to the results from 

REMIND, then reviewed the patient record manually 

for these 52 patients, and then answered the same 3 

questions listed above. In making a determination of 

AMI and diabetes, the physician looked at the entire 

patient chart (including portions not available to 

REMIND), and made a clinical diagnosis. The reason 

was that some parts of the medical record were not in 

electronic form, and therefore were inaccessible to 

REMIND.  Therefore, the conclusions reached were 

independent of the domain knowledge and rules 

provided to REMIND. 

Using the physician reads as ground-truth, Table 1  

compares the hospital billing codes with Ground Truth, 

and also REMIND with ground truth for diagnosis of 

AMI and Diabetes Mellitus (DM). Whereas the 

diagnostic accuracy of the coded information is only 

83% for AMI and 90% for DM, results based on 

Table 1. Accuracy for AMI & Diabetes for 52 patients 

Diag

nosis 

ICD-9 CODES REMIND 

FP FN Acc FP FN Acc 

AMI 0 9 83% 1 2 94% 

DM 1 4 90% 0 1 98% 
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REMIND are much closer to Ground Truth (90% and 

95%, respectively).  Of the 52 patients coded as AMI, 

only 43 actually fit the MONICA criteria for AMI 

(Definite, Probable or Possible).  In comparison, 

REMIND correctly identifies 8 of the 9 patients with 

No AMI. Of the 52 patients, 19 had diabetes, based on 

the Ground Truth.  REMIND makes only one 

diagnostic error, compared to 5 in the ICD-9 codes.  

Further, REMIND was able to assess whether a 

patient was given proper glycemic control.  It was 

found that of the 53 patients analyzed, 13 patients had 

diabetes.  In the critical period 24 hours after 

admission, of these 13, 6 had excellent control of their 

blood sugars, 1 had moderate control, 1 had poor 

control, and surprisingly 5 patients were not assessed 

for blood sugar at all.  For their entire stay, 4 had 

excellent control of their blood sugars, 5 had moderate 

control, 3 had poor control, and 1 patient was not 

measured at all.  Note that such clinical assessments of 

process such as glycemic control would be impossible 

by just looking at billing codes, and would be 

extremely time consuming (and expensive) for a 

physician to perform.  For instance, the manual chart 

review averaged 30 minutes per patient, while 

REMIND ran in mere seconds over all 1000 patients. 

 

Additional Results from the UPMC Analysis:  

As mentioned earlier, one of the advantages of our 

solution is that once it is implemented on the 

institution’s data, it is very easy to extract additional 

information to support other clinical applications.   

One of the most valuable tools available to the 

hospital administrator is outcomes analysis – namely, 

analyzing the available data, slicing and dicing it 

different ways using different database and OLAP 

tools, to determine the impact of different variables on 

outcomes.  The problem, however, is that the only 

available data for analysis is the financial data (with 

diagnosis and procedure codes), and as we show that 

analysis can lead to incorrect clinical conclusions [57].  

Table 2 compares the impact of incorrect coding on 

two key financial outcomes: Length of Stay (LOS) and 

Charges. (These are good surrogates for quality of care, 

because in general patients with better care will have 

shorter hospital stays, and fewer complications, leading 

to lower charges.) LOS derived from coded 

information in all 52 patients coded, as having an AMI 

is about 0.5 days less than the Ground Truth. (This is 

because 9 patients who actually don’t have an AMI, but 

have been incorrectly coded as having an AMI, are 

included in computing the Average LOS) Table 2 

shows that using the diagnosis extracted by REMIND 

achieves much greater accuracy, being only 0.1 days 

off the truth.  Similarly, coded information leads to an 

underestimation of charges incurred in AMI patients by 

about $5000, whereas REMIND is only off by $1500.   

There is an additional subtle problem beyond the 

under-estimation of poor outcomes.  Suppose the 

administrator is considering hiring a diabetic nurse for 

the ER for the purpose of providing better treatment to 

diabetics – the next step would be to analyze the 

available data to determine exactly how much poorer 

the outcomes were for AMI diabetics versus non-

diabetics, and then determine if the potential impact 

would justify the resources needed to increase staffing. 

Table 3 Shows that the errors in coded information 

regarding AMI and DM compound the underestimation 

of both LOS and Charges in diabetics with AMI.  Thus, 

coded information would lead to the conclusion that 

LOS for diabetics was 0.6 days less than for non-

diabetics, and charges incurred were lower by 

~$26,000.  In actual fact (Ground Truth), diabetics 

stayed an average of ~4.5 days longer, and incurred an 

additional ~$15,000 in extra charges.  REMIND was 

much closer to Ground Truth, correctly identifying that 

diabetics both stayed longer (by ~5 days), and incurred 

higher charges (by ~$21,000).  Table 3 demonstrates 

the value of REMIND in correctly identifying specific 

diagnostic categories of patients for outcomes research.  

They also show the hazards of plotting cost-saving 

strategies and resource allocations based purely on 

electronically coded information.  For instance, ground 

truth (and REMIND) reveals exactly the opposite 

Conclusion about LOS and Charges for diabetics with 

AMI.  This establishes the utility of REMIND, which 

paralleled Ground Truth, in correctly identifying and 

analyzing outcomes in a large cohort. 

In conclusion, this study showed that REMIND was 

able to successfully aid in both diagnosis of AMI and 

diabetes, and in assessing the quality of care for these 

patients in at least one aspect (glycemic control) in the 

Table 3. Impact of diabetes on Financial Outcomes 

Outcomes Patient-

type 

CODERS Truth REMIND 

LOS 

(days) 

Diabetics 7.13 11.00 11.67 

Non-

diabetics 

7.70 6.60 6.60 

Charges 

($) 

Diabetics 70,854 105,100 114,887 

Non-

diabetics 

97,302 90,175 88,976 

 

Table 2. Outcomes on AMI patients 

Outcomes ICD-9 

Codes 

Ground 

Truth 

REMIND 

LOS (days) 7.54 7.93 8.05 

Charges ($) $89673 $94688 $96379 
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acute (ICU) environment. The results showed that 

diagnosis was significantly superior to the use of 

structured data (i.e. billing codes), and allowed for fast 

assessment of process quality that could not be 

assessed using structured data alone. 

In many of the deployments that follow, REMIND 

is used for clinical applications beyond the primary one 

described.  In the interests of brevity, we restrict the 

description to the primary application. 

 

5.2. Therapy recommendation for patients at 

risk for Sudden Cardiac Death (SCD) 
Institution: South Carolina Heart Center 

Setting: Chronic Cardiac Care  

IT System: Physician practice IT system supporting 24 

cardiologists, single location, 61,027 patients. 

Population: All patients. 

Goal: Guideline compliance & Therapy 

Recommendation: identify patients who are at risk for 

Sudden Cardiac Death, and assess them for  

defribillator implantation  

Electronic Data: Billing and demographics DBs and 

transcribed free text (history and physical reports, 

physician progress notes, and lab reports). 

 

Cardiac patients who have had a prior MI are at risk 

for sudden cardiac death (SCD).  Each year, SCD 

claims the lives of 300,000 Americans.  In 1997, a trial 

was conducted to study the efficacy of using 

implantable cardioverter defribillators (ICDs) to help 

prevent sudden cardiac death [49]. The Multicenter 

Automatic Defibrillator Implantation Trial II (MADIT 

II), showed that patients who had a prior MI and had 

low ventricular function, had their 20 month mortality 

rate drop from 19.8% to 14.2%, a significant 31% 

reduction in mortality, when an ICD was implanted.  

The trial was stopped in 2001, with a recommendation 

to implant ICDs in these patients [50]. 

Afterwards, there was a need to rapidly identify 

patients who met these criteria, and evaluate them for 

ICD implantation.  Ordinarily, this could be done in 

one of two ways.  One approach would be to review 

several thousand patient records manually to assess 

whether a patient was eligible for an ICD.  This 

approach would be extremely time-intensive and 

laborious.  Another approach could be to evaluate 

patients as they come in for regular check-ups with 

their cardiologist.  Unfortunately, this would result in 

needless deaths as patients would only be evaluated if 

they had a check-up, not to mention the possibility that 

this new guideline may not be evaluated among the 

several hundred that the physician must consider.  

Therefore, it is critical to rapidly assess whether 

patients were eligible for ICDs, as every month of 

delay would result in an increased chance of SCD. 

Working with the South Carolina Heart Center 

(SCHC), we implemented REMIND to identify patients 

who were eligible for an ICD as per the MADIT II 

study, and who had not yet received an ICD.  A total of 

61,027 patients were analyzed from the practice for 

eligibility of an ICD per MADIT II guidelines.  

REMIND identified 383 patients of the 61,027 as being 

eligible for an ICD.   The total processing time for 

REMIND for all 61,027 patients was 5 hours on a 

Pentium M 1.4 GHz laptop. 

These 383 patients were mixed with 383 patients 

randomly drawn from the rest of the population (i.e., 

MADIT-II ineligible as per REMIND), and 150 of 

these patients were randomly re-selected. An 

electrophysiologist manually reviewed the charts for 

each of these 150 patients to assess MADIT-II 

eligibility. The reviewer was blinded to the results of 

REMIND at the time of this determination. 

The concurrence between the REMIND system and 

the manual chart review for eligibility for MADIT-II 

trial was 94% (141/150). The sensitivity and specificity 

of REMIND to identify patients were 99% (69/70) and 

90% (72/80) respectively.  “Conclusion: REMIND can 

automatically identify patients who meet definable 

clinical guideline inclusion/exclusion criteria with a 

high degree of accuracy. REMIND could be used to 

improve quality of care and outcomes for patients at 

risk for cardiovascular disease.”[26] 

 

5.3. Guideline Adherence Study for Patients 

with Non-ST Elevation MI  
Institution: Veterans Health Administration (VHA) 

Hospital, Pittsburgh 

Setting: Acute Care  

IT System: Large hospital IT system supporting several 

hundred physicians, multiple specialities, multiple 

locations, 7 Million patients across the US. 

Population Analyzed: ER Patients admitted with a 

diagnosis of unstable angina or non-ST elevated MI 

over the last 3 years (1400 patients). 

Goal: Guideline compliance with ACC guideline. 

Electronic Data: Tremendous amounts of structured 

and unstructured information (see below). 

 

The Veterans Health Administration (VHA) patient 

database is universally acknowledged as one of the best 

(if not the best) databases of clinical information in the 

world.  The VHA database is designed to collect a 

tremendous amount of clinical information in 

structured form – in addition to the demographics, 

diagnosis (ICD-9), laboratory, and pharmacy system, 
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many many additional clinical variables are recorded in 

structured form.  Additionally, the VHA database has a 

vast store of unstructured free text, including history 

and physicals, admission and discharge reports, 

progress notes, specialist reports, nursing evaluations, 

and radiology, ECG, and ultrasound reports.  In fact, 

the VHA database is being strongly recommended by 

CMS as a model for future EHRs. 

It was expectation that with such a tremendous 

database, the history of quality of care research, and the 

diligent efforts of the physicians and nurses to keep it 

current over the last 20 years, there would be little need 

for automated REMIND analysis. As expected, the 

support for automated analysis was significantly better 

than that at any other institution we have encountered. 

However, somewhat surprisingly we also found that 

despite the world-class database and research, the 

available structured data was ineffective for answering 

questions about the quality of care and compliance. 

As discussed previously, one of the big needs in 

cardiology is to assess whether patients are being 

treated properly as per established clinical guidelines.  

The treatment guideline for patients with a certain type 

of myocardial infarction, in this case patients with non-

ST elevation MI was provided by the ACC [10] 

(http://www.acc.org/clinical/guidelines/unstable/unstab

le.pdf.).  (Another type of myocardial infarction, MI 

with ST elevation, is treated differently.)  

The main responses to the guideline are to provide 

medication to the patient.  For each patient, one must 

select the correct set of medications for the patient.  

There are four broad classes of medication for these 

patients: aspirin; angiotensin converting enzyme (ACE) 

inhibitors or angiotensin receptor blockers (ARB); beta 

blockers; and glycoprotein IIb/IIIa receptor 

anatognists.  For each medication, it is important to 

figure out if the patient should be taking the drug, and 

also if a patient has a known contra-indication (allergy) 

to the drug.  For example, ACE or ARBs should only 

be given to patients with diabetes mellitus, congestive 

heart failure, left ventricular dysfunction or 

hypertension.  In addition, there are a number of 

reasons a patient even in these conditions should not be 

given the medication, such as if the patient is pregnant, 

has pulmonic or aortic stenosis, renal failure, etc.  As 

one can see, the determination of the appropriateness of 

each class of medication is quite complex. 

The VHA has been conducting a retrospective 

research study on a population of 1400 patients.  A 

trained research nurse manually extracts the 

information for about 90 variables from these patients.  

We implemented domain knowledge within REMIND 

to extract information for about 80 of these variables, 

and have compared the results of the extraction with 

the manual extraction on about 1000 patients. 

In this paper, we present the results of analysis for a 

sub-population of 327 patients admitted with non-ST 

elevation MI. These patients were studied to see if they 

were treated properly for each of these four classes of 

medications as per the ACC guidelines [10]. For each 

patient, the patient record was searched to see if the 

patient was treated properly for each of these four 

medications by both REMIND and manually with the 

manual abstraction.  For each patient, any disagreement 

between REMIND and the abstraction was adjudicated 

manually by a medical expert. If REMIND and the 

research nurse’s extraction agreed, both were assumed 

to be correct. Note that the research nurse had access to 

the entire patient record, which includes information 

that was not available to REMIND. 

REMIND v0.5 took 4.5 hours to extract the values 

of the 4 variables (see Table 11) for 327 patients using 

a Pentium M 1.6 GHz laptop.  (The current version of 

REMIND is expected to be faster by about 2-3 orders 

of magnitude.) The medical abstractor took 176 hours 

to complete the analysis manually for the same 

variables [67]. 

Table 4 compares the accuracy of REMIND and 

manual abstraction for each of the 327 patients.  That 

is, for each patient, this analysis showed what percent 

of patients were accurately assessed using REMIND 

and manual abstraction (using the adjudication as a 

gold standard). Table 4 shows that REMIND works at 

least as well as manual abstraction in identifying 

patients who were treated per guidelines for non-ST 

elevation MI. Note, that the task is different from that 

shown in Table 1. There, the task was to extract ICD-9 

codes, and the comparison was with abstractors who 

had no medical knowledge.  Here, the task is to extract 

clinical information, and we compare REMIND to a 

trained nurse with expert medical knowledge; this task 

is much harder because, as discussed earlier, these 

medical inferences require subtle inferences to be 

drawn, particularly for determining contra-indications. 

Table 4. Accuracy of REMIND vs. trained medical  

nurse for guideline compliance 

TREATMENT 

ACCURACY (%)  N=327 

REMIND MANUAL 

Aspirin 319 (97%) 314 (96%) 

Beta Blockers 319 (97%) 316 (97%) 

ACE Inhibitors/ARB 300 (92%) 310 (95%) 

Glycoprotein IIb/IIIa 

Receptor Antagonists 
300 (92%) 290 (89%) 
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In a controlled study like this, it is possible to spend 

the time to manually review every patient to assess 

performance.  In reality, however, it is impractical to 

expect a medical expert to spend time to manually 

review every patient chart to study if the patient was 

treated properly or not.  In this study, only non-ST 

elevation MI was considered.  If one includes the full 

spectrum of cardiac diseases, including ST elevation 

MI, heart failure, arrhythmias, etc., then one can easily 

see how daunting a task it would be to review every 

chart for compliance.  By using a tool like REMIND, it 

would be possible to review patients with many 

different conditions.  This would enable physicians to 

ensure that patients were treated properly, and hence 

improve their conditions dramatically.  

The Veterans Health Administration (VHA) 

operates 172 medical centers, more than 800 

ambulatory care clinics, and provides healthcare for 7 

million veterans making it the largest integrated health 

system in the United States. Further, the VHA 

mandates that the databases in all institutions are 

identical.  This means that now that REMIND can 

work successfully at VHA Pittsburgh, it should apply 

to all the VHA medical centers, with no changes in 

domain knowledge.  This can dramatically increase the 

impact of our system at the VHA. 

 

5.4. Patient Identification for Clinical Trials 
Institution: Nebraska Heart Institute (NHI) 

Setting: Chronic Care  

Physician practice IT system supporting 32 

cardiologists, 4-5 locations, 208,000 patients. 

Population: All patients. 

Goal: Automatically identify patients who are eligible 

for clinical trials  

Electronic Data: Billing and demographics DBs and 

transcribed free text (history and physical reports, 

physician progress notes, and lab reports). 

 

Introducing medical advances into practice is a risky 

endeavor. Clinical Trials are a critical component to 

managing this risk. Clinical Trials are required for 

drugs and medical devices (as an aside, including 

machine learning-based software to perform Computer-

Aided Detection[14][21][61]). Each clinical trial has its 

own inclusion and exclusion criteria 

(www.clinicaltrials.gov), which are used to identify 

eligible patients, and then enroll them, for the trial. 

Clinical Trials are very expensive. Pharmaceutical 

companies spend $20 Billion/yr in the US [43]. Patient 

recruitment is roughly 10% of a trial’s costs ($3.6B in 

2002 alone). Difficulty in recruiting patients has been 

identified as the top cause of delay in Clinical Trials 

[42]. A key factor in determining the length and cost of 

a trial is the time it takes to identify and sign up eligible 

patients for a trial. (For a blockbuster drug, every day’s 

delay in releasing the drug, costs the company, 

$2Million/day [33].) 

REMIND has been used at NHI to successfully 

identify eligible patients for two actively-recruiting 

clinical trials. Some “recruitability criteria” (beyond 

the trial criteria) were added into the analysis; there 

criteria are used by NHI’s trial coordinators to further 

identify which eligible patients are more likely to agree 

to participate in the trial (depending on the trial, these 

criteria could include physical fitness, geographic 

distance from a hospital, age, co-morbidities, etc.) A 

key metric for success is the eligibility rate, namely, 

the fraction of eligible patients from all patient records 

examined. Note that eligibility is determined by 

examining the entire patient record (including non-

electronic data). The traditional method for trial 

recruitment (other than advertising for patients) is 

manual examination of patient records by the trial 

coordinators. Automated identification of eligible 

patients will help NHI to recruit more patients, with 

less effort, and less time, resulting in faster and cheaper 

trials.   

The first trial is a medical device trial sponsored by 

a major device manufacturer. This trial has 18 

inclusion/exclusion criteria with a target enrollment of 

20 patients at NHI. From NHI’s population of 208,000, 

REMIND identified 363 likely eligible patients. 

Adding the “recruitability criteria,” reduced this list to 

31 patients. 29 of these patients were then reviewed by 

the trial coordinators for eligibility (2 patients could 

not be easily validated as the appropriate records were 

at an offsite location.) Of the 29, 18 (62%) were 

confirmed eligible. Of the 11/29 ineligible patients, 5 

were determined to be ineligible from (non-electronic) 

data available to the coordinators, but not to REMIND. 

REMIND has performed even better on an actively 

recruiting drug trial sponsored by a major 

pharmaceutical company. This trial has 14 inclusion/ 

exclusion criteria with a target enrollment of 200 

patients at NHI. From NHI’s population of 208,000, 

REMIND identified 2,538 likely eligible patients, of 

which 312 also met the additional recruitability criteria. 

Of the 286 patients were validated by NHI, 270 (94%) 

were confirmed eligible by NHI’s trial coordinators. Of 

the 16/286 ineligible patients, 5 were determined to be 

ineligible from (non-electronic) data not available to 

REMIND.  (In another process, NHI has contacted 215 

of these 270 to participate in the trial; 35 of these 

patients have accepted.)  

http://www.clinicaltrials.gov/
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To put eligibility rates of 62% and 94% in 

perspective, an eligibility rate of 10% would be 

considered extremely good. 

 

5.5. Quality of Care Analysis for Multiple 

Institutions 
Institution: NHI & SCHC (described earlier) 

Population: All 270,000 patients from both institutions 

Goal: Automatically extract quality of care information 

for Heart Failure and Amiodarone 

 

Within the realm of CVD, heart failure imposes the 

heaviest burden on the healthcare system.  In the 

United States, approximately 5 million people have 

heart failure, with 550,000 more diagnosed each year.  

Heart failure results in 12-15 million physician office 

visits and 6.5 million hospital days each year, and 

accounts for over 50,000 deaths yearly. Heart failure is 

a chronic disease with no cure.  Patients who are 

diagnosed with heart failure may live for 10-15 years 

after the initial diagnosis.   Many of the hospital stays 

associated with heart failure occur because of acute 

incidents that can be avoided if the patient is properly 

treated and monitored, and several guidelines have 

been developed to improve the quality of care [16]. To 

assist these efforts, several leading medical 

organizations, including the ACC, AHA, and the AMA, 

have jointly identified key performance metrics to 

assist with proper monitoring and treatment of heart 

failure patients.  These metrics are designed to assist 

the cardiologist monitor the health of the patient, and 

assess whether changes in treatment are needed.  In 

addition, these metrics list key medications that the 

patient should be taking.   The AMA has created PCPI, 

the Physician Consortium for Practice Improvement, to 

be responsible to codify and maintain these metrics. 

Unfortunately, as described earlier, simply 

generating a guideline or metric does not guarantee that 

physicians will follow them.  To assist physicians and 

practices with compliance to these guidelines, 

REMIND was used on data from two physician 

practices consisting of a total of 270,000 patients.  

First, patients with heart failure were identified using 

both ICD-9 codes as well as by analyzing the physician 

notes.  Then, each of the metrics in the PCPI guidelines 

were extracted for these heart failure patients. 

For example, the PCPI guidelines state that every 

heart failure patient should have a number of 

measurements and assessments taken each year, 

including left ventricular function, blood pressure, 

signs and symptoms of cardiac volume overload, 

activity level, etc.  Each of these measurements can be 

done in a number of different ways.  For example, left 

ventricular function can be assessed using various 

imaging modalities, such as ultrasound, MRI, nuclear 

medicine, etc.  Activity level can be assessed through 

observation of the patient through one of many simple 

exercises.  Sometimes, there will be explicit data on 

these, but other times the assessment of these things 

must be inferred from the physician’s dicated notes.   In 

addition, the PCPI guidelines state that patients should 

be on medications such as beta blockers, ACE or ARB, 

and Warfarin (for patients who also have atrial 

fibrillation) unless there are contra-indications to these 

medications.  REMIND was used to assess each of 

these guidelines at a patient level, and then aggregated 

to the entire physician practice (for both practices).   

A second analysis was done on patients taking a 

medication called amiodarone.  This is an extremely 

powerful, but toxic, drug used to treat atrial fibrillation, 

a cardiac condition. In addition to its toxicity, it often 

can lead to complications in cardiac patients taking 

other medications.  Because of this, it is very important 

for patients who are taking amiodarone to be monitored 

periodically (usually every 6 months) for signs of 

toxicity.  The North American Society of Pacing and 

Electrophysiology (NASPE) has released a set of 

guidelines for monitoring patients taking Amiodarone 

[25].  Our system identifies patients who are taking 

amiodarone, and then within this subset, those patients 

who are not being treated as per the NASPE guidelines.  

The goal here is to help reduce the incidence of side-

effects due to the toxic nature of Amiodarone.  

The previous applications have presented REMIND 

results at a single institution. Recall that one of the key 

requirements in REMIND was to allow the same 

applications to be run at multiple institutions with little 

or no retuning. NHI and SCHC have very different 

healthcare IT systems (different vendors, different 

kinds of data stored, different databases, different data 

formats), but being cardiology physician practices, 

have very similar needs regarding quality of care. 

REMIND was run at both institutions’ data with 

virtually no change in domain knowledge.  Although 

validation is ongoing for amiodarone, initial validation 

results indicate that – at least for cardiology practices – 

domain knowledge developed at one institution (NHI) 

retains an equivalent level of performance when 

transferred to another institution (SCHC).  This is 

critical for rapid deployment.  We are in the process of 

expanding our pool to 1,000,000 cardiology practice 

patients, and plan to offer a suite of quality of care 

reports and facilitate benchmarking, both to national 

standards and across institutions. 
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6. Related Research  
 

From the earliest days of computing, physicians and 

scientists have explored the use of artificial intelligence 

systems in medicine [41]. The original hope was the 

such systems would become physicians in a box, 

possibly even surpassing systems in diagnostic tasks 

[12][61]. Today, the research focus has changed from 

just diagnosis to support the continuum of healthcare 

via clinical decision support systems (see, 

[18][75][63][64]). The fundamental goal of such 

systems is to reduce costs, improve the quality of care 

and patient outcomes (see [54] for a summary).  

Although the impact of such systems on a national 

scale has been muted, the biggest impact has been 

made by computerized physician order entry systems 

that have been shown to reduce medication errors and 

improve patient outcomes.  These systems are based 

entirely on structured data, and alert the prescribing 

physician about potentially dangerous drug-drug and 

drug-disease interactions [24][68]. 

Another long-standing area of computer research in 

medicine has been the automated interpretation and 

analysis of medical images [55]. In the recent past, 

many such systems have moved out of the realm of 

research labs into clinical practice, mostly as 

Computer-Aided Diagnosis systems [21][13] that assist 

the radiologist in identifying potential cancers in 

medical images [61][14][8]. We are currently 

expanding the REMIND platform to include images, 

and are developing therapy-assistance tools that will 

help the physician make therapeutic decisions, 

particularly in the treatment of lung cancer. 

From the computer science perspective, our work 

draws heavily on earlier work on Bayesian networks 

and graphical models (see [29][34] for an overview). 

Probabilistic networks have been used in biomedicine 

and health-care have become increasingly popular for 

handling the uncertain knowledge involved in 

establishing diagnoses of disease, in selecting optimal 

treatment alternatives, and predicting treatment 

outcomes in various different areas. For example, 

DxPlain [5] is a decision support system which uses a 

set of clinical findings (signs, symptoms, laboratory 

data) to produce a ranked list of diagnoses which might 

explain (or be associated with) the clinical 

manifestations. DXplain provides justification for why 

each of these diseases might be considered, suggests 

what further clinical information would be useful to 

collect for each disease, and lists what clinical 

manifestations, if any, would be unusual or atypical for 

each of the specific diseases. Quick Medical Reference 

(QMR [47]) is a large probabilistic graphical model 

which combines statistical and expert knowledge for 

approximately 600 significant diseases and 4000 

findings. In the probabilistic formulation of the model 

[65] the diseases and the findings are arranged in a bi-

partite graph, and the diagnosis problem is to infer a 

probability distribution for the diseases given a subset 

of findings. Promedas [38] is a patient-specific 

diagnostic decision support system which produces a 

differential diagnosis on the basis of a set of patient 

findings. It also suggests the most informative tests that 

may be performed to make the differential diagnosis 

more precise.  Promedas is based on medical expert 

knowledge encoded into a probabilistic graphical 

model (a Bayesian network), which serves as the 

inference engine of the system. These systems all 

require clinical data to be entered in a structured 

database. 

Combi et al [19] provides an extensive review of 

temporal reasoning methods in medicine. We briefly 

list some methods that are similar to REMIND in some 

aspects. Ngo et al [52] describe a temporal 

probabilistic reasoning method via context-sensitive 

model construction. Bellazi et al [6] describe a system 

that uses a Dynamic Bayesian Network to analyze the 

blood glucose level of a patient over a time interval. 

Kayaalp et al [39] use structured information to predict 

probabilities of survival for ICU patients. Other related 

research [32][37][40] deals with representing temporal 

data and enforcing temporal integrity.   

As discussed earlier, a fundamental premise of 

REMIND, is to exploit the redundancy in the medical 

record. Our initial implementations achieved very high 

performance despite using very simple methods from 

computational linguistics.  Although Natural Language 

Processing (NLP) is not the focus of this work, we are 

leveraging the rich body of research in this area [45].  

Consider the falling examples, all drawn from doctors’ 

dictations, that contain the word Aspirin: “Patient is on 

Aspirin 2 mg daily; Patient was off Aspirin for a while 

and then resumed; Dr Smith considered Aspirin 2 mg 

for him; He stopped taking Aspirin post operative; Use 

of Aspirin 2mg cannot be excluded; Aspirin on 

Mondays and Wednesdays; He wants to discuss 

possible contraindications of his Aspirin dose; Dr Jones 

ruled out Aspirin for him.” Clearly simple look-up for 

the word "Aspirin" will fail to identify all patients 

currently taking Asprin. Friedman et al [23] discuss the 

potential of using NLP techniques in the medical 

domain, and also provides a comparative overview of 

the state-of-the-art NLP tools applied to biomedical 

text. [17][23][30] provide a survey of various 

approaches to information extraction from biomedical 

text including named entity tagging and extracting 
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relationship between different entities and between 

different texts. Clinically relevant observations and 

features can be extracted with much better accuracy 

since documents (EMRs) do not have to be treated as 

bag-of-words ignoring their structure and semantics 

altogether.  For instance, Taira et al [69][35] have done 

research on automatic structuring of radiology reports. 

Of direct relevance is the analysis of doctors’ dictations 

by Chapman [15] which identifies the 7 most common 

uses of negation in doctors’ dictations. Augmenting our 

aliases with a general lexical reference [22] or a 

medical language dictionary (SNOMED [66]) should 

improve performance. Furthermore text-mining 

research to identify relevant documents [46][53] may 

help eliminate irrelevant documents that are mixed in 

with doctors’ dictations. DISCOTEX [51], like 

REMIND, extracts information from text, and 

integrates it via data mining. DISCOTEX focuses on 

learning rules, whereas REMIND uses domain 

knowledge for data mining. REMIND is implemented 

so that text extraction and NLP (and better reasoning) 

methods can be easily plugged into REMIND.  

 

7. Next Steps 
 

Our immediate next step is to incorporate REMIND 

into the point of care.  Initially, REMIND could be 

used to alert research coordinators when a potentially 

eligible patient (for their trial) is being seen by another 

clinician somewhere else in the clinic.  Eligible patients 

are most likely to enroll if approached at the hospital 

(since all tests, examinations, and paperwork can be 

completed on-site, instead of making a separate trip, as 

would be the case if approached on the phone).  

REMIND can also provide point of care support to 

the physician, for instance, by evaluating the patient 

against all ongoing open trials and guidelines, and 

flagging the eligible ones. To this, we are installing 

REMIND on a multi-million patient database for a 

large academic medical center. 

Other interesting applications include disease 

surveillance, epidemiological studies, bioterrorism 

surveillance, and outbreak detection. The RODS [70] 

(Real-time Outbreak and Disease Surveillance) system 

mines emergency room data (specifically, 7 fields are 

provided) and can detect early signs of an outbreak, 

particularly by detecting spikes in ER admissions.  Our 

approach is complementary, based on a more detailed 

analysis of individual patient data. We also intend to 

explore pay-for-performance opportunities with CMS 

and other payers.  Medicine is rich with knowledge 

bases such as taxonomies (LOINC [60], MeSH [73], 

and RxNORM), controlled vocabularies (SNOMED 

CT [66]), and ontologies (UMLS [74]). These systems 

provide reasoning with crisp logic but unable to handle 

uncertain knowledge and incomplete/imprecise data. 

REMIND will incorporate these external sources of 

knowledge into its inference. 

 

8. Conclusions 
 

We conclude by re-stating some key points: 

Medical data is highly complex and difficult to 

analyze.  Financial data is well organized but has 

limited clinical value. Clinical data is very poor from 

the point of view of automated analysis (the “Data 

Gap” in Figure 1).  Systems that collect high-quality 

data will become part of routine clinical care, but are 

unlikely to have a large patient impact in 5-10 years. 

Methods based on analyzing a single kind of data, 

for example, billing data alone, or just text data (with 

NLP) are unlikely to have much success.  Each source 

of data has its unique limitations, which might be 

overcome by information from another data source. 

Our solution, REMIND, overcomes these problems 

by exploiting the redundancy in patient data, and 

combining information from multiple sources based on 

external medical knowledge.  A probabilistic reasoning 

system performs the actions necessary to infer high-

quality clinical data despite the contradictions, errors, 

and omissions in the data (and the data extracts from 

the patient record). 

Although our system works with poor data and is 

not an NLP system, better data and better data 

extraction methods only improve our performance.  

REMIND is designed to allow multiple analysis 

algorithms to be plugged into the platform. 

Our goal is to build a general framework to perform 

inference from medical patient data for a variety of 

applications and diseases. REMIND provides value in 

different clinical settings for different diseases.  Our 

system has been designed to support quickly adding 

data from new institutions, and creating new 

applications (the domain knowledge files). 

The key barrier for IT systems to support automated 

guideline compliance is the lack of high-quality clinical 

data collected in day-to-day care.  Once REMIND 

automatically extracts this data, then many other 

applications are enabled, including: trial recruitment, 

quality assurance, therapy monitoring, etc. 

Here we have only discussed cardiac applications of 

REMIND.  REMIND has been used for other disease 

areas, including cancer, and efforts are underway to 

combine images with clinical and financial data to 

improve analysis. REMIND is current deployed on a 

rapidly growing population of over 5,000,000 patients. 
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